A Parallel Particle Swarm Optimizer

نویسنده

  • J. F. Schutte
چکیده

1. Abstract Time requirements for the solving of complex large-scale engineering problems can be substantially reduced by using parallel computation. Motivated by a computationally demanding biomechanical system identification problem, we introduce a parallel implementation of a stochastic population based global optimizer, the Particle Swarm Algorithm as a means of obtaining increased computational throughput. The Particle Swarm requires very few algorithmic parameters to define convergence behavior due to its simplicity, and, as a population based optimization method it is a natural candidate for concurrent computation. The parallelization of the Particle Swarm Optimization (PSO) algorithm is detailed and its performance and characteristics demonstrated for the biomechanical system identification problem as example. 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modified Particle Swarm Optimizer - Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., Th

In this paper, we introduce a new parameter, called inertia weight, into the original particle swarm optimizer. Simulations have been done to illustrate the signilicant and effective impact of this new parameter on the particle swarm optimizer.

متن کامل

A hierarchical particle swarm optimizer with latin sampling based memetic algorithm for numerical optimization

Memetic algorithms, one type of algorithms inspired by nature, have been successfully applied to solve numerous optimization problems in diverse fields. In this paper, we propose a new memetic computing model, using a hierarchical particle swarm optimizer (HPSO) and latin hypercube sampling (LHS) method. In the bottom layer of hierarchical PSO, several swarms evolve in parallel to avoid being t...

متن کامل

An Improved Particle Swarm Optimizer Based on a Novel Class of Fast and Efficient Learning Factors Strategies

The particle swarm optimizer (PSO) is a population-based metaheuristic optimization method that can be applied to a wide range of problems but it has the drawbacks like it easily falls into local optima and suffers from slow convergence in the later stages. In order to solve these problems, improved PSO (IPSO) variants, have been proposed. To bring about a balance between the exploration and ex...

متن کامل

Damage detection of skeletal structures using particle swarm optimizer with passive congregation (PSOPC) algorithm via incomplete modal data

This paper uses a PSOPC model based non-destructive damage identification procedure using frequency and modal data. The objective function formulation for the minimization problem is based on the frequency changes. The method is demonstrated by using a cantilever beam, four-bay plane truss and two-bay two-story plane frame with different scenarios. In this study, the modal data are provided nume...

متن کامل

A Hybrid Particle Swarm and Ant Colony Optimization for Design of Truss Structures

This paper presents a particle swarm ant colony optimization for design of truss structures. The algorithm is based on the particle swarm optimizer with passive congregation and ant colony optimization. The particle swarm ant colony optimization applies the particle swarm optimizer with passive congregation for global optimization and ant colony approach is employed to update positions of parti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003